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Dielectric dispersion of erythrocyte ghosts
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The underlying mechanism of the low-frequency dielectric dispersion, called the � dispersion, of osmoti-
cally lysed erythrocytes �erythrocyte ghosts� has remained open since its finding �H. P. Schwan and E. L.
Carstensen, Science 125, 985 �1957��. The � dispersion is peculiar to erythrocyte ghosts and has never been
observed for intact erythrocytes. Numerical calculation based on interfacial polarization revealed that the �
dispersion is due to the presence of a hole of about 30 nm in radius in the plasma membrane.
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Biological cells and tissues are polarized by an electric
field. The polarization includes different kinds of processes
with different time constants. Therefore, the effective permit-
tivity of biological cells and tissues shows dielectric disper-
sions in different frequency regions of the applied ac field: �,
�, and � dispersions in order of increasing frequency �1–3�.
The � dispersion is due to orientation of water molecules.
The � dispersion that usually appears at frequencies between
10 kHz and 100 MHz is well interpreted in terms of the
Maxwell-Wagner effect or interfacial polarization, which is
due to the accumulation of charges at the interfaces between
the membrane and the aqueous phases. Several possible
mechanisms responsible for the � dispersion at frequencies
below about 10 kHz have been proposed. These are related
to the gating of ion permeation in excitable membranes �4�,
intracellular membrane systems connecting with the plasma
membrane such as the transverse tubular system in muscle
cells �5�, and the displacement of counterions around
charged cell surfaces �6�. The � dispersion, however, is still
not completely understood because of the structural com-
plexities of cells and tissues and technical difficulties in mea-
surement at frequencies below 1 kHz due to electrode polar-
ization.

In 1957, Schwan and Carstensen �7� reported that osmoti-
cally lysed bovine erythrocytes �called ghosts� showed “�
dispersion” at frequencies below 10 kHz in addition to the �
dispersion of a characteristic frequency of about 2 MHz. The
� dispersion has about half the intensity of the � dispersion
and has never been found for intact erythrocytes. Ghosts are
simple spherical cells with the well defined cytoplasm hav-
ing the same electrical properties as the external medium.
The � dispersion of ghosts was unequivocally interpreted by
interfacial polarization theories with a single-shell model,
i.e., a conductive sphere covered with a less conducting
shell. Theoretical analysis of the � dispersion revealed that
the membrane capacitance was almost the same as that of
intact erythrocytes and that the membrane still remained in a
low conductive state �7,8�. In contrast to the � dispersion, no
clear explanation has been obtained for the polarization
mechanism of the � dispersion; the possible mechanisms de-
scribed above are unlikely for ghosts.

Osmotic lysis forms holes in the erythrocyte membrane,
which freely pass large molecules such as hemoglobin. The
number of holes per cell and their size were assessed by the
efflux kinetics of probe molecules of various sizes, suggest-

ing typically a single hole of 10–20 nm in radius �9�. The
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closure of the hole depends on the composition of electrolyte
solutions and the incubation temperature. If a hole remains in
the ghost membrane, what kinds of effects are expected on
the dielectric spectrum of the ghost suspension? This ques-
tion is important not only for analyzing the � dispersion
precisely but also for seeking hints on understanding the �
dispersion.

If the membrane has no hole, dielectric dispersion of
spherical cells can be simply simulated by the theories based
on the single-shell model: a spherical cytoplasm �of relative
permittivity �c and conductivity �c� covered with a mem-
brane �of �m and �m� in a continuous medium �of �a and �a�.
Pauly and Schwan �10� demonstrated that the dielectric dis-
persion of the model includes two relaxation terms in general
cases. Since biological cells meet the conditions that the
shell thickness dm is much smaller than the sphere radius R
and �m��a��c, the intensity of the high-frequency relax-
ation term becomes negligibly small, and thus the dielectric
dispersion is approximately represented by one relaxation
term. Such an analytical approach, however, is not applicable
to a cell model with a hole, and therefore a numerical tech-
nique is required.

In a previous paper �11�, a three-dimensional finite differ-
ence method has been developed to calculate the admittance
of a parallel plate capacitor including a cell in a continuous
phase. The same method was applied to a cell model with a
hole. A cubic lattice with 50�50�50 lattice points was used
for the system. Each lattice point has a cubic element, which
is assigned to either the cell interior or the external medium.
The boundary between the cell interior and the external me-
dium has a membrane except for the area of the hole. The
cell interior, the membrane, and the external medium are all
assumed to be isotropic materials having frequency-
independent permittivity and conductivity. The method
yields the electric potential distribution in the system by
solving the Laplace equation numerically under boundary
conditions, viz., an electric potential difference is given be-
tween the top and the bottom, and current density is zero at
the four sides. In the method, boundary conditions between
different materials in the system always hold and tangential
current in the membrane is ignored for its negligibly small
thickness. The calculation was performed at frequencies be-
low 100 MHz where the quasielectrostatic approximation is
applicable. From the electric potential distribution, we can
calculate the admittance of the system, which is simply con-

verted into the effective complex permittivity.
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Since the spherical cell model with a hole is symmetric
with respect to the 	 axis running through the centers of the
sphere and the hole �Fig. 1�, its polarization has two compo-
nents parallel and perpendicular to the 	 axis; anisotropic
dielectric properties are expected. Hence, dielectric spectra
were calculated when the 	 axis is parallel and perpendicular
to the electric field, which arrangements are here termed the
parallel and the perpendicular orientations, respectively �Fig.
1�. The parameter values used for the calculations were rel-
evant to erythrocyte ghost suspensions: �a=�c=0.25 S/m,
�a=�c=80, �m=5, �m=10−7 S/m, dm=5 nm, R=2.5 
m �R
is the equivalent radius calculated from the surface area of
the cell model� and the volume fraction of the cell in the
system is 0.2

Figure 2 shows the dielectric spectra calculated for a cell
without and with a hole of varying equivalent radius Rh as
30, 60, 140, and 290 nm. The cell without hole showed di-

FIG. 1. Cross sections of a parallel plate capacitor of cubic form
including a spherical cell with a hole in �a� parallel and �b� perpen-
dicular orientations. The 	 axis is the axis of the cell model, through
the centers of the sphere and the hole, being �a� parallel and �b�
perpendicular to the electric field. A pair of horizontal bars indicates
the plate electrodes. The z and x axes of the system are indicated in
�a�.

FIG. 2. Dielectric spectra calculated for the spherical cell with
and without a hole. �A� The relative permittivity and �B� the loss
factor are plotted against the frequency of the applied ac field. The
loss factor was calculated by subtracting the contribution of dc con-
ductivity. Curve a in both �A� and �B� correspond to spectra for the
cell without hole and the cell with a hole of 30–290 nm in radius in
the perpendicular orientation. Curves b–e refer to the cell with a
hole of 30, 60, 140, and 290 nm, respectively, in radius in the par-

allel orientation.
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electric relaxation of a characteristic frequency of about
1 MHz. The dielectric spectra for the perpendicular orienta-
tion were all the same as that of the cell without hole, irre-
spective of Rh. In the parallel orientation, however, dielectric
relaxation appeared at frequencies below 100 kHz in addi-
tion to the high-frequency relaxation. Both the intensity ��1
and characteristic frequency fc1 of the low-frequency relax-
ation depended on Rh, whereas those of the high-frequency
relaxation���2 and fc2� were independent of Rh.

With Rh=30 nm, the intensities and characteristic fre-
quencies of the dielectric relaxation terms were ��1=1660,
fc1=1.6 kHz, ��2=1130, and fc2=1.0 MHz for the parallel
orientation �curve b in Figs. 2�A� and 2�B��, and those were
��2=1130 and fc2=1.0 MHz for the perpendicular orienta-
tion �curve a in Figs. 2�A� and 2�B��. The values of fc1 and
fc2 are, respectively, very close to those of the � dispersion
�fc1=1.7 kHz� and the � dispersion �fc2=2 MHz� of ghost
suspensions �7�. If we assume a random orientation distribu-
tion which introduces the factor 1 /3 during the ensemble
average, the intensity of the low-frequency relaxation ��̄1
becomes ��1 /3=550, and that of the high-frequency relax-
ation ��̄2 is equal to ��2=1130 because ��2 is independent
of the orientation. The ratio ��̄1 /��̄2 becomes about 0.5,
being also in good agreement with that obtained for ghost
suspensions �7�.

The dielectric responses were different between the paral-
lel and perpendicular orientations at low frequencies. To un-
derstand the difference, we examine the electric potential
distributions in the models corresponding to curves a and d
in Fig. 2. Figure 3 shows the contour plots of the electric
potential at the cross sections in the parallel and perpendicu-
lar orientations �see Fig. 1�. There are similar potential dis-
tributions above 100 kHz, irrespective of the orientation,
viz., the cell interior has almost the same potential value at
100 kHz and the cell is electrically invisible at 10 MHz be-
cause the membrane is short-circuited. On the other hand,
marked differences in the potential distribution are found be-

FIG. 3. Electric potential distributions in a capacitor including a
cell with a hole in �a� the parallel and �b� perpendicular orientations.
Contour plots of the electric potential are shown at cross sections
through the centers of the sphere and the hole. The frequency of the
applied ac field is indicated in each panel. Arrows in the panels for
1 kHz indicate the position of the hole of 140 nm in radius. The top
and bottom horizontal lines in each panel correspond to the high-
and low-potential electrodes, respectively.
tween the two orientations below 10 kHz. At 1 kHz, the cell
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interior in the parallel orientation has a constant potential of
which value is equal to that at the position of the hole; there
is no potential difference at the top membrane near the hole
but a large potential difference at the bottom membrane.
Since the potential drop at the membrane indicates that the
membrane is polarized and serves as a capacitor, at 1 kHz,
the larger portion of the membrane accumulates more
charges in the parallel orientation than in the perpendicular
one. This may lead to a considerable increase in the effective
permittivity of the system in the parallel orientation at fre-
quencies below 10 kHz.

Does the low-frequency dispersion �the � dispersion� re-
sult from the presence of only one hole? When many holes
uniformly distribute in the cell membrane, a single-shell
model with a lossy shell can represent such a cell. Theories
for the model predict a decrease in the relaxation intensity of
the � dispersion with an increase in the membrane conduc-
tivity but never the occurrence of the � dispersion. For a
spherical cell with two holes located at its opposite poles,
which is a model for a cell treated by high-voltage pulses
052903
�namely, an electroporated cell�, numerical simulations did
not indicate the � dispersion although the intensity of the �
dispersion decreased with an increase in the size of the hole.
When two holes were located in one of the hemispheres of
the cell, however, the � dispersion again appeared. These
results do not necessarily rule out the presence of more than
one hole in a ghost, but the localization of holes is at least
required for evoking the � dispersion.

In conclusion, the � dispersion of erythrocyte ghosts can
be interpreted in terms of interfacial polarization using a cell
model with a hole in the membrane, without considering
another polarization process. The Rh value that provided the
best simulation for the dielectric spectrum found by Schwan
and Carstensen �7� was consistent with that estimated by
solute efflux kinetics �9�. Thus, the � dispersion would en-
able us to estimate the size of the hole in ghosts but also to
study resealing of holes in damaged cells �12�.

I thank Dr. K. Sekine for his critical reading of this manu-
script and helpful discussions.
�1� H. P. Schwan, in Advances in Biological and Medical Physics,
edited by J. H. Lawrence and C. A. Tobias �Academic Press,
New York, 1957�, Vol. 5, p. 147.

�2� H. P. Schwan, in The Biophysical Approach to Excitable Sys-
tems, edited by W. S. Adelman and D. Goldman �Plenum
Press, New York, 1981�, p. 3.

�3� K. R. Foster and H. P. Schwan, in Handbook of Biological
Effects of Electromagnetic Fields, edited by C. Polk and E.
Postow �CRC Press, Boca Raton, 1986�, p. 27.

�4� H. M. Fishman, D. Poussart, L. E. Moore, and E. Siebenga, J.
Membr. Biol. 32, 255 �1977�; 50, 43 �1979�.

�5� G. Falk and P. Fat, Proc. R. Soc. London, Ser. B 160, 69
�1964�.
�6� G. Schwarz, J. Phys. Chem. 66, 2636 �1962�; C. W. Einolf and

E. L. Carstensen, ibid. 75, 1091 �1971�.
�7� H. P. Schwan and E. L. Carstensen, Science 125, 985 �1957�.
�8� H. Kaneko, K. Asami, and T. Hanai, Colloid Polym. Sci. 269,

1039 �1991�.
�9� M. R. Lieber and T. L. Steck, J. Biol. Chem. 257, 11651

�1982�; 257, 11660 �1982�.
�10� H. Pauly and H. P. Schwan, Z. Naturforsch. 14b, 125 �1959�.
�11� K. Asami, J. Phys. D 39, 492 �2006�.
�12� P. L. McNeil and M. Terasaki, Nat. Cell Biol. 3, E124 �2001�.
-3


